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Abstract

A key aspect of science-based predictive modeling is to assess the credibility of
predictions. To gain confidence in predictions, one should demonstrate consistency between
physical observations, expert judgments, and the predictions of equally credible models. This
suggests a relationship between fidelity-to-data, robustness-to-uncertainty, and confidence in
prediction. The purpose of this work is to explore the interaction between these three aspects of
predictive modeling. The concepts of fidelity, robustness, and confidence are first defined in a
broad sense. A Theorem is then proven that establishes that these three objectives are
antagonistic. This means that high-fidelity models cannot, at the same time, be made robust to
uncertainty and lack-of-knowledge. Similarly, equally robust models cannot provide consistent
predictions, hence reducing confidence. The conclusion of this theoretical investigation is that,
in assessing the predictive accuracy of numerical models, one should never focus on a single
aspect only. Instead, the trade-offs between fidelity-to-data, robustness-to-uncertainty, and
confidence in prediction should be explored.
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Purpose

« Explore the relationship between three aspects of
science-based predictive modeling:

Fidelity-to-data

Predictive
Accuracy
v

Robustness-to-
uncertainty

Prediction-looseness
(Confidence)

* Our thesis is that prediction credibility cannot be
achieved without first understanding the trade-offs
between fidelity, robustness, and confidence.
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The Relationship Between Experiments
and Simulations is Changing ...

* Old paradigm:

Experiments are qualification tests, proof that
something does or does not “break”.
Simulations are used to understand what
happened, generally, after the fact.

* New paradigm:

Experiments explore the mechanics and
validate predictions. Simulations are used to
predict, with quantifiable confidence , across

the operational space.

® Key: Demonstrate the credibility of prediﬁijons.
+Los Alamos
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M&S Examples

« Predictability can be achieved if the right physics,
loading, and initial conditions are included in the

computational model.
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Information Integration

* Modeling & Simulation (M&S) is not sufficient to
achieve credible predictability. Information from
other sources must be integrated.

First-physics Principles Test & Experimental Observables Expert Judgment
ot

L3 & Historical Experience Knowledge &
Intuition

Goal: Combine all we know and

s . determine how well we know it. £
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Engineering Application

* The engineering application is the propagation of
an impact through an assembly of metallic and
crushable (foam pad) components.

Output
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The Design Space

Predictions are required for various combinations
of foam pad thickness and impact load magnitude.

Measured TOA Features and Statistics
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Sources of Evidence

 Evidence about the value of the peak acceleration
(PAC) feature come from several sources.
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Material Uncertainty

 The main modeling uncertainty is the constitutive
material of the foam pad (strain-stress curve).
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* Other sources of uncertainty include the values of
the (m;c;k) parameters, the initial condition, and

the shape and magnitude of the input accelerﬁ:ion.
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Convex Models of Uncertainty

« The uncertainty is represented by defining a family
of nested, convex domains U(a;q,) that “envelope”
the data for a given horizon-of-uncertainty a.

Force-displacement Curves

U(a;qo):{y:M(p;q) such that ”q—qO”Sa}, for >0 : _gsei
: | Y | | | 1oo{ & m -
__wo» % 60L
£ 8
gm_ hd 40
. At aﬁ"i'/""horlzon-of-uncertalnty, strainmsp'fi"'eﬁ“i'?’l curves
| can be “realized” from a domain U(a;q,), and used
4 define the non-linear forcing function F,_ (
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Typical Difficulties

 Experimental data sets are sparse and uncertain.
Expert judgment is often ambiguous. Models have
distributions on their outputs.

 Modeling assumptions provide a false sense of
confidence by “hiding” the /ack-of-knowledge.

* More often than not, no evidence is available to
suggest that these sources of uncertainty follow
conventional probability distributions.

« Similarly, no evidence is often available to suggest
degrees of belief, membership functions, basic
probability assignments, or possibility structures.

» Los Alamos
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Path Forward

* To demonstrate credibility (or provide confidence),
the sources of uncertainty and their influence on
the predictions must be assessed.

* This work does not advocate alternate approaches
to probability theory to represent the uncertainty.

* Nevertheless, each source of uncertainty should
be represented using the most appropriate theory.
(The difficulty becomes information integration.)

* The two important questions are:
B What is the total uncertainty?

® Are decisions robust to the uncertainty?

/al
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Definitions

« Fidelity-to-data (R): Degree of correlation between
test data and simulation predictions.

R2= Y[ —Mp®iq)f
k=1..N,_

* Robustness-to-uncertainty (a*): Maximum value
of the horizon-of-uncertainty for which all models
of the corresponding family U(a;q,) meet a given
fidelity requirement R,,_, .

a*=max{R < Ryyax » forall Me U(a;q, )}
0=0

* Prediction-looseness (i,): Range of predictions

expected from a family of equally-credible models.

Av = max M(p:q)— min  M(p;

ARV T (p:q) Wiy (p:q) e
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Two Important Remarks ...

« The importance of “prediction-looseness” stems
from the fact that, to predict with confidence, there
should be little difference (or small looseness i,)
between predictions of equally-credible models.

¢ Assessing the confidence in prediction here refers
to an assessment of prediction error away from
settings where physical experiments have been
performed.

> Los Alamos
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Theorem

« Theorem: Let U(a;q,) be an info-gap family of
models that obeys the axioms of nesting and
translation. Let a* be its robustness function.
Consider two initial settings of model parameters,

q,and q,’. If a*(q, ) = a(q,’), then i,(q,) =4i,(q,’).
da* dAy

>0, > (), Py
JR da* JR

>0

Theorem :

* Fidelity-to-data R and robustness-to-uncertainty a*
are antagonistic.

* Robustness-to-uncertainty a* and looseness 4, (or
confidence-in-prediction) are antagonistic.

: « Los Alamos
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Trade-offs Established by the Theorem

* Robustness decreases as fidelity improves.

Numerical simulations calibrated to better reproduce the
available test data become more vulnerable to errors in
modeling assumptions, errors in the functional form of
the model, and uncertainty and variability in the model
parameters.

« Looseness increases as robustness improves.

Numerical simulations that are made more immune to
uncertainty and modeling errors provide a wider, hence
less consistent, range of predictions.

 Looseness decreases as fidelity improves.

Numerical simulations made to better reproduce the

available test data provide more consistent predictions.

May lead to “over-calibrating” and a false sense of
_ confidence.
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Results — 1

* Ranges of TOA and PAC predictions for mcreaé
a-levels of uncertainty.

Range of TOA Prediction vs. Uncertainty Level Rapge of PAC Prediction vs. Uncertainty Level ~
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Level of Uncertainty, o (1/1)

}

* Robustness and opportunity of prediction err
for increasing a-levels of uncertainty.

Results — 2
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Results — 3

 TOA forecasting errors for several a-levels.

TOA Forecasting Eror at Uncertainty Level a = 0.1 TOA Forecasting Error at Uncertainty Level a = 0.3 TOA Forecasting Error at Uncertainty Level a = 0.6
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Results — 4

 PAC forecasting errors for several a-levels.

PAC Forecasting Error at Uncertainty Level a = 0.1
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Results — 5

¢ TOA looseness (range) for several a-levels.
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Results — 6

« PAC looseness (range) for several a-levels.
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Results — 7

=

i

¢ Confidence-in-predictions (derived from TOA and
PAC “looseness” using the total uncertainty, TU).
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Results — 8

« Confidence-in-prediction for several a-levels.
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Conclusion

* Prediction credibility cannot be achieved
without understanding the trade-offs between
fidelity, robustness, and confidence.

« Calibrating numerical simulations for maximum
fidelity-to-data is not a sound decision-making
strategy.

* Fidelity-to-data does not imply model validation.
In fact, optimized models have zero robustness
to uncertainty.

* Instead of being optimized, fidelity-to-data
should be made “good enough.” Robustness-
to-uncertainty and / or confidence-in-prediction
should be optimized, but remember that the two

. are antagonistic.
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